Exceptional Mite: simple yet flexible non-local exits
in a binary-portable VM

Reuben Thomas*
University of Glasgow

July 2001

Abstract

Mite is a low-level virtual machine that supports binary portability. Its
non-local exit mechanism is compatible with system calling conventions, and
is both language and machine neutral, yet allows the straightforward and
efficient implementation of a range of exception mechanisms, such as those of
C, Java and ML, and other sorts of non-local exit, such as continuations. This
makes it a good environment for experimentation in binary-portable mixed-
language code generation.

1 Introduction

Most programming languages have some form of non-local exit, that is, a way of exit-
ing a procedure or function without returning to its direct caller. Language features
that use non-local exit include exceptions, continuations, co-routines, backtrack-
ing and multithreading, and occur in all sorts of language: procedural, functional,
logical, object-oriented, message-passing and so on. Hence, any language-neutral
virtual machine (VM) must support non-local exits. At first glance, it seems that
no special support is necessary; after all, most processors lack explicit instructions
for non-local exit. However, in order to provide efficient machine-independent access
to native calling conventions, a VM must abstract the stack. Normal subroutine call
and return instructions are not affected by an abstracted stack, as they already act
implicitly on the stack, but in order to provide non-local exit, new primitives are
needed.

Most existing VM systems provide some non-local exit mechanism, but they tend
to be limited: either language-specific (JVM), OS-specific (NET), low-performance
(Cintcode) or not binary-portable (C--). Mite attempts to provide a mechanism that
is at the same time simple to use, simple to implement, efficient, language-neutral
and supports system calling conventions. It does not attempt to support optimal
code generation, nor to support every possible type of non-local exit, but rather
aims to be an 80-20 solution: 80% of the functionality with 20% of the complexity.

The rest of this paper is organized as follows. Section Bl discusses what function-
ality is required for efficient language and machine-neutral non-local exit. Section Bl
gives an introduction to Mite’s architecture, and section Hl discusses difficulties in
providing non-local exit in this context; section [describes Mite’s non-local exits
mechanism. Section Bl shows how C, Java and ML exceptions can be encoded in
Mite, and section [discusses continuations and co-routines. Section B considers
related work, and section [concludes.

*rrt@sc3d.org

mailto:rrt@sc3d.org

© Reuben Thomas 2001 (rrt@sc3d.org)

2 Required functionality

Although non-local exit constructs vary widely between languages, one basic prop-
erty ensures that most can be easily and efficiently implemented: it should be pos-
sible to make a non-local exit to any point in any routine in the current call chain
in a single operation. This means that:

e An arbitrary number of stack frames can be unwound in one go, making non-
local exit efficient

e A non-local exit site doesn’t need to be a call site, allowing exception handlers
to be separate from the main flow of control

e Conversely, the same code can be used both as the target of a non-local exit,
and as normal code, which eases the implementation of some constructs, such
as C’s setjmp (a function whose return value may be generated by a non-local
exit) and Java’s finally blocks (which may be reached either by an exception
being raised, or by simply falling through from a try block)

e A non-local exit can be made to the currently executing function, allowing
actions to be restarted, and exceptions to be handled by function in which
they are raised]

For simplicity, some more esoteric functionality is not required:

Arbitrary return type Non-local exits often want to pass values, but it is tricky
to arrange to pass arbitrary types; however, provided a pointer can be passed,
arbitrary values can be passed by reference, though not on the stack

Multiple stack support For simplicity, Mite does not support the use of multiple
stacks, as required for multithreading. Library or OS support can still be used
to perform these functions, though that will affect portability.

Asynchronous exceptions Also for simplicity, there is no support for asynchronous
exceptions; however, since it is natural to implement Mite fully re-entrantly,
it automatically supports most external asynchronous exception mechanisms.

Integration with OS non-local exit As there is no standard for OS support of
non-local exits, portability and simplicity dictate that Mite not support such
mechanisms either.

3 Mite

Mite [I0] is a simple register-based virtual machine with a RISC-like load-store
architecture and three-operand data-processing instructions. While simple enough
that its instruction set could be described as “idealized”, it is designed to allow
binary-portable code generation, is a good target for optimizing compilers, so that
its translator can be simple and fast, while still producing good native code, and has
a precise definition. It is intended to be implemented by just-in-time translation.
Mite abstracts both the underlying machine’s physical registers and the system
stack as a single entity, the virtual register stack. An indefinitely large number of

LOf course, if it is known in advance that the handler for an exception is in the same function,
a simple branch rather than a non-local exit can be used; however, it is often not known statically
where an exception will be handled.

2In the special case of tail calls, Mite does of course allow arbitrary tuples to be passed, just
as in a normal function call; see section [

© Reuben Thomas 2001 (rrt@sc3d.org)

virtual registers is allowed, which correspond to abstract stack locations. Virtual
registers are statically created and destroyed by directives inserted in the instruction
stream; notionally, this corresponds to growing and shrinking the virtual stack frame
by register-sized amounts. A new stack frame is started on entry to a function, and
only virtual registers in the current function are directly accessible.

To give a flavour of Mite’s assembly code, the following annotated example
contains a recursive function to calculate factorials, and a sample call of it. It is
followed by a more detailed explanation.

f.main declare a function with no arguments

NEW declare a new register to hold the argument to
fact

MOV 2,#10 load the constant 10

CALLF .fact,1,[1]

call fact with 1 argument, expecting 1 return
value

RETF 1, [2] return the result of fact from main
KILL kill the argument register

KILL kill main’s return chunk

NEW declare a single parameter

f.fact declare a subroutine

NEW declare a register . . .

MOV 3,#1 ... to hold the constant 1

NEW declare a register to hold the result
SUB 4,1,3 subtract 1 from the argument

BEQ .exit exit if zero

CALLF .fact,1,[1] otherwise recurse

MUL 1,1,4 multiply the argument by the result
.exit declare a branch label

KILL kill the result register

KILL kill the constant 1 register

RETF 2, [1] return the result

KILL kill the argument register

KILL kill the return chunk

Data-processing instructions have their destination as the first operand. Con-
stants are only allowed in the MOV instruction. Two types of label are used above:
branch labels, which denote a branch target, and function labels, which denote a
function entry point and are prefixed with ‘f’.

A register is introduced with NEW, and destroyed with KILL. Registers are created
and destroyed in stack order, so a register cannot be killed until all the registers
created after it have also been killed. Registers are numbered according to stack
position, counting from the bottom; the bottom-most register is number 1. NEW and
KILL are static directives, as mentioned above, so are not executed each time they
are reached; hence, the current size of the stack frame (or equivalently, the virtual
register file) at any point in the program can be calculated statically by simply
counting all the NEWs and KILLs up to the desired point.

The number of parameters to a function is indicated by the number of virtual
registers active at the function entry label (since registers cannot be shared between
stack frames); all parameters are assumed to be word-sized (as are registers)E A

3 Actually, arbitrary-sized “chunks” can also be declared, which are not held in machine reg-
isters, but must be accessed indirectly; for simplicity these are not treated further in the present
discussion, with the exception of return chunks.

© Reuben Thomas 2001 (rrt@sc3d.org)

function label also implicitly declares a “return chunk” as an implicit extra argu-
ment, which holds the caller and callee-saved information specified by the system
calling convention; this is passed to the RETF instruction as its first argument.

Note that so far the stack has not been mentioned explicitly at all, though it is
affected implicitly by virtual register spilling and function call and return.

4 Difficulties with providing non-local exit in Mite

Non-local exit involves unwinding the system stack. In native code this is gener-
ally achieved by simply setting the stack pointer to a previously saved value, then
branching to the return address, but in Mite it must be handled rather more deli-
cately.

Most of the difficulties arise from Mite’s virtual register stack, and in particular
the mapping from virtual to machine registers, which in general varies within a
program. There are three main problems:

e The physical to virtual register binding active at the return site must be
restored correctly.

e Unlike a call site, which knows the return type of the function called, a non-
local return site may be reached from anywhere, with different types of return
value.

e The stack pointer must be reset correctly by a non-local exit, a tricky operation
when the virtual register stack is taken into account.

When a function returns, the return site’s physical register binding must be restored,
and any return values written to the correct registers and memory locations. The
same things must be done at a non-local exit. However, while a function return
targets a call site, which can restore caller-saved registers and store results, a non-
local exit instruction goes to an arbitrary point in the code. Hence, some way of
indicating a potential non-local return site is needed, so that native code can be
inserted to deal with the result and reset the virtual to physical register binding.

This is easily achieved by assuming a standard register binding at such points,
with just the return value mapped into a register, and all other virtual registers
spilt to the stack. Hence, code that falls through or makes a normal branch to such
a point must spill all but one of the virtual registers to the stack, and make sure
that the virtual register which would have held the return code (had the destination
been reached by a non-local exit) is mapped to the correct physical register. It is
most natural for a non-local exit to pass its result in a register rather than on the
stack, since it alters the stack pointer as part of its operation.

The virtual registers that are active at a non-local return site must also be
correctly spilled when that site is actually reached by a non-local exit. To see how
this is done, let the routine that executes the non-local exit be called the ‘thrower’,
and that to which it returns the ‘handler’. The two possible situations are illustrated
in figures [l and B either the thrower is the same routine as the handler, or it is
deeper in the call chain. Clearly, the registers live at the return site must have been
spilt by the time the non-local exit is performed. If the thrower is the same as the
handler, this is easy: the non-local exit itself can perform the necessary spilling.
If the thrower is not the same as the handler, it is not possible to wait until the
non-local exit to perform the spilling, as the system cannot retrospectively spill
the necessary registers (it may not even know where their current values reside!).
Instead, the spilling must be performed at the function call that leaves the handler.

The second problem, dealing with the return type of a non-local exit, is much
simpler. At a normal function return site, the return type is known; non-local return

© Reuben Thomas 2001 (rrt@sc3d.org)

_ top of stack

— callee-saved registers

— incoming arguments

handler’s
callee -
-
_______ -]
handler |- - -1

only need to save registers |

- top of stack at handler

™~ return value goes here

in this part of the stack

Figure 1: Throwing between stack frames

thrower
and
handler

only need to save registers |
in this part of the stack

| stack pointer is reset to here

™~ return value goes here

Figure 2: Throwing within a stack frame

© Reuben Thomas 2001 (rrt@sc3d.org)

sites, however, may be reached from anywhere. Mite’s solution is to fix the return
type of non-local exits to be a single register value. If more than a single value needs
to be passed, the value can be a pointer, and the actual result placed in the heap,
or deeper in the stack.

The third problem is to ensure that the stack pointer is correctly reset. A function
call implicitly saves the current value of the stack pointer, to be restored by the
corresponding return. Obviously this is not possible for a non-local exit, where the
return site is not known, nor who will return to it. Hence saving and restoring the
stack pointer for non-local return must be done manually. Unfortunately, it is not
possible just to read the stack pointer’s value and then write it back later. First,
making the stack pointer directly readable and writable would involve devising rules
for its use in portable code, which would be hard to get right, as its use would have
to be heavily restricted. Secondly, how would one calculate the value of the stack
pointer needed at the handler label from elsewhere in the function? Depending on
the implementation, the stack pointer may vary during a function as virtual registers
and chunks are created and destroyed. Hence, a special instruction is needed to
obtain the correct value of the stack pointer, by allowing Mite’s translator, with its
knowledge of the generated code, to calculate it.

For similar reasons, a special non-local exit instruction is needed. It may seem
to be merely an abbreviation for:

return value in 1
MOV SP, 2 set SP
BAL 3 branch to return site

where SP is the stack pointer, but it covers up some nasty surprises: what if having
executed the first instruction it turns out that register 3, which holds the branch
target, is currently spilt? It has to be reloaded from its spill location, probably on
the stack, but that is no longer accessible, as SP has already been reset to its value
at the return site.

5 Non-local exits in Mite

Mite provides non-local exits by means of two instructions, CATCH and THROW, a
modifier for the CALLF and THROW instructions, SYNC, and a new type of label, the
handler label (prefixed with ‘h’).

CATCH r,l saves the value of the stack pointer at handler label [in register r.
Later, while the subroutine in which CATCH was executed is still live, THROW [,7,v
returns control to the handler at [. The value v overwrites the top-most register that
is active at the handler. The value of [(which may be either a label or a register
holding the value of a label) in the THROW instruction must be the same as in the
CATCH that yielded the value of r.

When THROW is executed, the stack’s state is changed to that of the handler
label. Since this may not be the same as at the corresponding CATCH instruction,
only those stack items which are live at both the CATCH and the handler label have
a defined value. Moreover, since the values of registers that are cached in physical
registers may be lost when a THROW is executed, all registers are assumed to be
held in memory at a handler, and the SYNC modifier is provided to save registers to
memory. It has one operand, a handler label, which is used to decide which registers
need to be saved. SYNC may be attached to a CALLF or THROW instruction, and is only
needed when the handler is in the same subroutine or function as the instruction
being SYNCed. Whether it is used on THROW or CALLF, SYNC is optional: for THROW it
need only be used when the handler could be the same as the thrower; for CALLF,
when the callee (or any more deeply nested callee) could THROW to the caller. SYNC

© Reuben Thomas 2001 (rrt@sc3d.org)

effectively enforces a caller-saves calling convention; indeed, it has no effect if the
system calling convention is purely caller-saves

The following code demonstrates the use of CATCH and THROW. The code from
.hand onwards is run three times: first on entry to main, then by the first THROW,
which throws from one point in main to another, and finally by the second THROW,
which causes a non-local exit from the subroutine sub. The result is that the four
words at . store are changed from their initial contents of four zeros to the sequence
0, 1, 2, 3. Note that both THROW and CALLF must have SYNC .hand added, so that
the virtual registers live at the handler are sure to have the correct values when it

is reached.

f.main

NEW

DEF 2, .store
NEW

MOV 3, #1
h.hand

NEW

NEW

MOV 5, ashift
SL 4, 3, 5
KILL

ST_a 3, [2, 4]
MOV 4, #1

ADD 3, 3, 4
NEW

CATCH 5, .hand
NEW

MOV 6, .hand
MOV 4, #2

SUB , 3, 4
BEQ .same

MOV 4, #3

SUB , 3, 4
BEQ .sub

RETF 1, []
.same

MOV 4, #2
THROW 6, 5, 4 SYNC .hand
.sub

MOV 4, #3
CALLF .sub, 3, [] SYNC
.hand

KILL

KILL

KILL

NEW

NEW

NEW

f.sub

address of results
first value to store
address offset
shift

shift to turn bytes into words
make address offset

next value to throw
get catch value
address to throw to
second value to store
decide next destination

based on previous result
third value to store

throw to same function

this call won’t return

kill remaining items

create parameters

4SYNC is similar to C-=’s cuts to annotation. This is used at a call site to specify variables that
are live at other points in the procedure, which may be reached by a non-local return from the
call about to be made. SYNC only allows one such point to be specified.

© Reuben Thomas 2001 (rrt@sc3d.org)

THROW 3, 2, 1

KILL

KILL

KILL

d.store

SPACEZ_a 4 words to hold results

6 Encoding exceptions

The commonest use of non-local exit in most programming languages is for excep-
tions. This section shows how three common languages’ exception styles can be
encoded using the mechanisms introduced above.

One shortcoming of all three encodings presented here is that they will not in
general interwork with other implementations of the same mechanisms. How then
do Mite’s function call and return manage to interwork with native code? Function
call and return are rather simpler mechanisms, and most system calling conventions
are simple, and designed to cater to the needs of C-like and Pascal-like languages.
They are designed to be fast, since function calls are common in compiled code. The
same is not true of exceptions, whose form varies widely between languages, and
since they are generally considered to occur infrequently, need not be as efficient.

This situation does not prevent portable Mite-encoded exceptions being used
solely within Mite code, however. It may also be possible, with a little knowledge
of how Mite’s translator works, to generate Mite code to handle exceptions in a
system-specific wayE Finally, where exceptions are implemented through system
calls, as with Windows’s Structured Exceptions [§] and some implementations of
setjmp and longjmp, Mite can use these like any other compiled code.

6.1 C exceptions

C uses the setjmp and longjmp macros [I] to implement non-local exit. A call to
setjmp is translated as follows:

register 1 will hold the result of setjmp
register 2 points to the jmp_buf

NEW scratch register

NEW constant

MOV 4, #0+1 one-word offset

CATCH 3, .hand

STa 3, [2] store the address in the jmp_buf

MOV 2, .hand get the address of the handler

ST_a 3, [2, 4] store the handler address in the jmp_buf
KILL kill registers that are no longer needed
KILL

KILL the top stack item is now register 1
MOV 1, #0 set result of setjmp to 0

h.hand the point reached by longjmp

5Mite is designed for graceful degradation of portability: it is possible, for example, to write
word-length dependent code and endianness-dependent code that is otherwise still binary portable,
or even processor-independent device drivers. Similarly, it may sometimes be possible and advan-
tageous to generate Mite code rather than native code even for system-dependent instruction
sequences such as those involved in exception handling.

© Reuben Thomas 2001 (rrt@sc3d.org)

When control reaches .hand, register 1 contains either 0, if the code was entered
at the top, or the longjmp value, if the handler was reached by a THROW instruc-
tion (which overwrites the top-most stack item with the throw value). The call to
longjmp is implemented as:

register 1 points to the jmp_buf
register 2 contains the return value

NEW register to hold the stack state
NEW constant

DEF 4, #a one-word offset

LD.a 3, [1] get stack state

LD.a 1, [1, 4] get handler address

THROW 1, 3, 2 perform the THROW

This causes the handler to be reached with the given return value. Since all registers
are spilled at a handler, the jmp_buf need contain no registers. That makes this
portable implementation less efficient than many system-specific implementations,
but unless longjmp is used frequently this is unlikely to be a problem.

There is a further subtlety: to ensure that the stack state is consistent when a
longjmp is executed, all CALLs and THROWs in a function that calls setjmp must be
followed by SYNC .hand.

6.2 Java exceptions

Exceptions in Java work as follows: a code block guarded by try can raise an
exception, which is an object whose type is a sub-class of Exception. A try block
is followed by a number of catch blocks, each of which has an associated exception
type. The first whose type is a super-class of that of the exception object is executed.
After the catch blocks there may be a finally block, which is always executed,
whether the try block terminates normally, or with a return or break, or by an
exception. This applies even if a further exception is raised in one of the catch
blocks. Exceptions may be raised anywhere by throw, which is given the exception
object. This is often created at the same time:

throw new MyExceptionClass("we made a booboo");

is a common idiom.

Since user-supplied exception classes can add extra instance variables and meth-
ods, exceptions are naturally value-passing.

As exceptions have a special syntax in Java, the implementation is more straight-
forward than that for C. The try block starts with a CATCH, and all method calls
and throws inside it are SYNCed. The first catch block is preceded by a handler
label, whose address is used as the current innermost handler. When an exception
is thrown to this handler, it determines which catch block to run, according to
the type of the exception, and then branches to it. Each catch block ends with a
branch to the end of the last such block, where the finally block occurs, if any. If
no suitable exception value is found, the exception must be re-thrown to the next
innermost handler.

Any returns, breaks or continues within the try block must also cause the
finally block to be run before the appropriate action is performed. Thus it might
be best to translate the finally block as a subroutine, or alternatively to pass it
a continuation address. Since an exception may be raised inside a catch block, an
extra handler must be installed for the duration of the catch blocks, which causes
the finally block to be executed before the exception is re-raised.

© Reuben Thomas 2001 (rrt@sc3d.org)

The addresses of handlers can be passed to THROW sites in a number of ways. The
currently active handler could be passed as an implicit parameter to every method
call, or the handler chain could be kept as a linked list on the stack. It would also be
possible to have a separate handler stack. Most conventional compilation methods
are applicable to Mite.

Note that although Mite’s THROW instruction only allows a single register to be
passed, rather than the compound values allowed in Java, no run-time penalty is
incurred by forcing the exception value to be passed by reference, since it is a Java
object, and must in any case be allocated on the heap.

6.3 ML exceptions

In ML, exceptions are datatype constructors, and may thus pass arbitrary datatypes.
An exception e is raised with raise e. An exception causes immediate termination
of expression evaluation, and the value of the expression becomes the exception
value. Exceptions thus propagate outwards like any other result, except that they
prevent any further evaluation.

An exception handler is a guard on an expression of the form

E handle P, => E; | . . . | P, => E,

where F is the guarded expression, the P; are patterns whose top-level constructor
is an exception, and the E; are expressions. There is no equivalent of finally in
ML.

When an exception value is propagated into an expression that has a handler,
the exception value is matched against each clause in the handler; if a match is
found, the corresponding handler expression is evaluated, and its value becomes the
value of the expression. Otherwise, the exception value becomes the value of the
whole expression, just as if there were no handler.

The implementation is similar to the Java case. Since exceptions are propagated
until they reach a handler, intervening unguarded expressions can be ignored, and
exceptions can be THROWn straight to the next innermost handler, just as in Java.
When a handler is reached, the exception is dispatched by ML pattern matching
rather than according to the Java class hierarchy, but this does not affect the im-
plementation per se.

Unlike the Java case, since ML exceptions need not be constructed on the heap,
there is a potential speed penalty in having to place them there, rather than sim-
ply treating them as return values. On the other hand, if an exception has to be
propagated through several handlers before being handled, it may well be quicker
to allocate space for it on the heap than have to copy it between stack frames once
per handler.

7 Continuations and co-routines

As well as exceptions, other forms of non-local exit are widely used; however, since
they are not simply and efficiently expressible in terms of returning to a point in
the current call chain, more specialised support is required.

Continuations are equivalent to tail calls. The TCALLF instruction is just like
CALL, but removes the current stack frame before making the call, so that the
return will be made to the current function’s caller.

Implementing co-routines is trickier: if they are forbidden to make calls, a group
of co-routines can be compiled into a single function. Otherwise support for multiple
stacks is required, which could either be emulated (rather inefficiently) in portable
code, or make use of (possibly non-portable) external libraries.

10

© Reuben Thomas 2001 (rrt@sc3d.org)

8 Related work

There is a wide variety of approaches to non-local exits in current VM systems. Some
simply do not allow them, such as the dynamic code generation systems VCODE [3]
and Lightning [2], which are designed for run-time code generation, rather than as
compiler targets. In such a system, non-local exit is only possible via library sup-
port. Cintcode [H], a BCPL-oriented VM, does not abstract the stack, which can
therefore be manipulated directly to obtain non-local exit; however, Cintcode has
an abstract memory model, and does not allow interworking with native code. The
Java virtual machine [B] has specific support for Java exceptions, but, as one might
expect from its Java-oriented design, does not cater for other types of non-local
exit. The NET VM [G] offers flexible exceptions integrated with Windows’s Struc-
tured Exception Handling [§], but this is a heavyweight and OS-specific framework:
processing an exception involves two passes over the entire stack, and the creation
and traversal of complex data structures. Finally, C-- [7], an intermediate language
specifically designed as a compiler target, supports a wide range of non-local ex-
its [@], but its interface is complex and, as yet, unimplemented. Also, it does not
directly implement all the mechanisms it supports, but merely provides hooks for a
run-time system to do so, and it does not support the generation of binary-portable
code.

9 Conclusion

Most languages support some form of non-local exit, but few VM systems allow such
features to be implemented simply, efficiently and portably. Mite provides direct
support for the most common types of non-local exit, in particular exceptions of
various sorts and continuations, and allows other non-local exit mechanisms to be
supported, either less efficiently, or less portably; importantly, this trade-off is made
by the programmer, not forced by Mite’s design. This helps to make Mite a good
environment for experimentation in binary portable mixed-language programming,
at a level where efficiency aspects have not been abstracted away and can still be
fully explored.

References

[1] American National Standards Institute, “ANS X3.159-1989: Programming
Languages—C,” (1989).

[2] Bongzini, P., Using and porting GNU lightning (2000),
ftp://alpha.gnu.org/gnu/.

[3] Engler, D. R., VCODE: A retargetable, extensible, wvery fast dynamic
code generation system, in: Proceedings of the 23rd Annual ACM Con-
ference on Programming Language Design and Implementation, 1996,
http://www.pdos.lcs.mit.edu/~engler/.

[4] Jobson, C. and J. Richards, “BCPL for the BBC Microcomputer,” (1983).

[5] Lindholm, T. and F. Yellin, “The Java Virtual Machine Specification,”
Addison-Wesley, 1999, second edition.

[6] .NET framework SDK technology preview,
http://msdn.microsoft.com/downloads/.

11

ftp://alpha.gnu.org/gnu/
http://www.pdos.lcs.mit.edu/~engler/
http://msdn.microsoft.com/downloads/

© Reuben Thomas 2001 (rrt@sc3d.org)

[7]

Peyton Jones, S., T. Nordia and D. Oliva, C--: A portable assembly language,
in: Proceedings of the 1997 Workshop on Implementing Functional Languages,
1997.

Pietrek, M., A crash course on the depths
of Win32 structured exception handling (1997),
http://www.microsoft.com/msj/0197/exception/exception.htm.

Ramsey, N. and S. Peyton Jones, A single intermediate language that supports
multiple implementations of exceptions, in: Proceedings of PLDI 00, 2000.

Thomas, R., “Mite: a basis for ubiquitous virtual machines,” Ph.D. thesis, Uni-
versity of Cambridge Computer Laboratory (2000), http://sc3d.org/rrt/.

12

http://www.microsoft.com/msj/0197/exception/exception.htm
http://sc3d.org/rrt/

	Introduction
	Required functionality
	Mite
	Difficulties with providing non-local exit in Mite
	Non-local exits in Mite
	Encoding exceptions
	C exceptions
	Java exceptions
	ML exceptions

	Continuations and co-routines
	Related work
	Conclusion

